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(NAG3-1723)

MULTI-OBJECTIVE CONTROLLER DESIGN FOR LINEAR SYSTEMS VIA OPTIMAL

INTERPOLATION

SUMMARY

We propose a methodology forthe designofa controllerwhich satisfiesa setofclosed-loop

objectivessimultaneously.The set ofobjectivesconsistsof (i)pole placement, (ii)decoupled

command tracking of step inputs at steady-state,and (iii)minimization of step response

transientswith respect to envelope specifications.We firstobtain a characterizationof all

controllersplacing the closed-looppoles in a prescribedregionof the complex plane. In this

characterization,the freeparameter matrix Q(s) isto be determined to attainobjectives(ii)

and (iii).Objective (ii)is expressed as determining a Pareto optimal solution to a vector

valued optimization problem. The solution of this problem is obtained by transforming it

to a scalarconvex optimization problem. This solutiondetermines Q(0) and the remaining

freedom in choosing Q(s) isused to satisfyobjective(iii).We write Q(s) = (I/v(s))(_(s)for

a prescribed polynomial v(s). Q.(s)isa polynomial matrix which is arbitraryexcept that

(_(0)and the order of (_(s)are fixed.Obeying these constraints_)(s)isnow to be "shaped"

to minimize the step response characteristicsof specificinput/output pairsaccording to the

maximum envelope violations.This problem isexpressed as a vector valued optimization

problem using the concept of Pareto optimality.We then investigatea scalaroptimization

problem associated with thisvector valued problem and show that itisconvex.

The organizationof the report isas follows.The next sectionincludessome definitions

and preliminarylemmas. We then givethe problem statement which isfollowed by a section

including a detailed development of the design procedure. We then consider an aircraft

control example. The lastsection gives some concluding remarks. The Appendix includes

the proofsof technicallemmas, printoutsof computer programs, and figures.



PRELIMINARIES

We first give some definitions: 7_ denotes the set of real numbers, _+ denotes the set

of nonnegative real numbers, and 7"/denotes the set of proper rational functions with real

coefficients. The transpose of a matrix E is denoted by E'. If E is a m x n matrix with

entries over a set R, we sometimes denote this by E E /_x, or simply by E E R, when

the size of E is irrelevant or clear from the context. For a matrix E over T_, IIEII denotes

the euclidean norm of E, i.e., IIEJl - Ctrace(E'E). I and 0 denote the identity and zero

matrices, respectively. For a given set R and matrices A = [ao] E R ''x'_ and/3 = [bo] E E_'X_,

the product A ®/3 is called the Kronecker matrix product and is defined as the following

mp x nr matrix:

For a transfer matrix G(s)

an�3 ... al,B

:

am l /3 ... area�3

A /3 ] ._i.i,_a G(s)C D

denotes a minimal state-space realization of G(s) represented by the dynamical equations:

= Az + Bu, y=Cx + Du.

Conversely, for a dynamical system as in (I),

(1)

states that the transfer matrix G(s) satisfies G(s) = C(sI - A)-tB + D. For at, a2 positive

integers satisfying a2 > at, 'al : a2' denotes the ordered set of integers '{at, ..., a2}'. Let v_

and v2 be some ordered sets of integers contained in {1, ..., m} and {1, ..., n}, respectively.

Consider A E R rex" for some set R. The notation A(_,.v_} defines the submatrix of A

containing its rows and columns with indices contained in vl and v2, respectively. The

notation A(,t,:) (resp. A(:m) ) defines the subset of A containing its rows and columns with

indices in vl (resp ..... , m}) and {1, ..., n} (resp. v2). A function @: 7_"x* _ 7_ is called

convex if for any A E [0, 1] and ai E T4."x_, i = 1, 2 the following inequality holds
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For i= I,...,I,consider the (cost)function ¢(K), :R,,,x,,...,R. We say that K* E Rm×, is

Pareto optimal with respect to the criterion

(¢(K),,...,¢(K)t; K E 7"¢._'')

if there does not exist K ° E 7"¢.'_×'_ satisfying

¢(K°)1 < ¢(K'),, ..., ¢(KO)t _< ¢(K')I

where strict inequality holds for at least one i E { 1, ..., l}.

We will now give three lemmas concerning the concept of Paxeto optimality. Lemma 1

states that if the cost functions axe the euclidean norms of some vector valued functions

the Paxeto optimality is preserved when these cost functions are replaced by their second

powers. Lemma 2 is concerned with obtaining Paxeto optimal solutions via scalaxization.

Lemma 3 states that the notion of Pareto optimality is preserved under one-to-one and onto

mappings.

Lemma 1 Consider the functions f(K)i : 7Un×'_ ---, _kxl, i -- 1, ..., h. K ° is Pareto optimal

with respect to

(llf(K)tll, ..., Ilf(g)hll; K e 7Z'"") (2)

if and only if it is Pareto optimal with respect to

(llf(Khll ..., llf(K)hll ; K E TC' xn).

Lemma 2

ative numbers o_i, i = 1, ..., h. Any solution K" of

h

rain _ a,¢(K)i
KE'R'_ x _ i=1

is Pareto optimal with respect to

(¢(K)_,...,¢(K)h;K E _"'_).

(3)

Consider the functions ¢(K)i : _,,_x,_ .... T_+, i = 1, ..., h, and arbitrary nonneg-

(4)

Lemma 3 Consider two sets X and 31 and assume that there exists a one-to-one function

g from X onto 32. Consider a set of given functions ¢(K)i : X ---* _, i = 1, ..., h and define

(2)



_(c_)i : 3) -'* _, i = 1, ..., h as O(a)_ = O(g-t(a))i where g-l(. ) denotes the inverse function

of 9(. ) from 3) to X. Then, K ° E X is Pareto optimal with respect to

(4_(K)t,..., 4_(K)h; K E X) (6)

if and only if so is 9(K*) with respect to

We now give three additional lemmas. Lemma 4 expresses the zero-state unit-step re-

sponse of a scalar transfer function in terms explicitly of various time functions belonging

to different components of the transfer function. Lemmas 5 and 6 consider the convexity of

two particular cost functions.

Lemma 4 Consider A(s) E 7-l, B(s) E _Ix_, Q(s) E 7__x_, and C(s) E 7"("'l. Assume

that there ezists a polynomial v(s) of order l such that the (i,3)-th entry of O,(s), denoted by

qij(s), can be written as

1

qii(8) = _-_(Oti,i,tS t q" Oti,i,t_IS t-I "t" ... + ai,/,O), i = 1, ..., m, j = 1, ..., n. (8)

Then, there ezists _ E 7_lxn'Ct+l), a scalar time function a(t), and a set of scalar time

functions consisting of mn(l + 1) elements, namely

{fl,o(t), ..., fl,,(t), f2,o(t), ..., f2,t(t), ..., f,,_n,o(t), ..., Inn,,(t)},

such that the zero-state unit st_ response associated with the transfer function A(s) +

B(s)Q(s)C(s) can be written as

a(t) + a[fl,o(t).., ft,t(t) f2,o(t).., f2,t(t).., fn,_,o(t).., fn,,,t(t)]'.

Lemma 5 Consider scalar time functions a(t), b,(t), i --- 1, ..., n which are bounded in t > O.

For oh G _Ix. define a cost function d_(a) as follows:

_(_) = sup{a(t) + _[bt(t)... b.(t)]'}.
t>o

The function cb(a ) is convex in or.
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Lemma 6 Consider scalar time .functions al(t), a2(t), bi(t), ci(t), i = I, ..., n which are

bounded in t >. O. For a E 7_l×'_ define the cost function ¢(a) as follows:

_(a) = sup max{al(t) + a[bl(t).., b.(t)]', a_(t) + c,(t)]', o}.
t_>o

The function ¢(a) is convex in a.

The proofs of the lemmas can be found in Appendix A.

PROBLEM STATEMENT

Consider the feedback system in Figure 1 where wl, w2 are the disturbance inputs and zl,

z_ are the regulated outputs. In general, we want to minimize the effect of the disturbances

on the regulated outputs in the closed-loop system. The output y is the measured output

and u is the control input. The plant G(s) and the controller K(s) are linear time-invariant

finite dimensional systems. The transfer matrix associated with the input/output pair (u, y)

is strictly proper. Let Pl, P2, rl, and r2 denote the dimensions of the vectors zl, z2, wl,

and w2, respectively. For simplicity, we will be concerned with only those plants satisfying

Pl = r_ = r2 = 1, P2 = 2. Our discussion can be extended to more general classes of systems

in a straightforward way.

Let a subset _ of the left half complex plane be given. This set prescribes the desired

closed-loop pole locations. ;o is arbitrary except that it satisfies several assumptions made

for technical reasons. First, P is symmetric, i.e., if a is contained in P then so is the complex

conjugate of a. Secondly, we assume that the unobservabte and/or uncontrollable modes of

G(s) around the control channel (u, y) are all contained in P. Finally, the number of elements

of P is no less than the order (total number of poles with multiplicities) of the open-loop

plant G(s) and P contains at least one real element.

Let K: denote the set of all controllers which satisfy that the closed-loop poles are con-

tained in P.

Some arbitrary time functions

s_(t), s'd(t ), s_(t), s_(t), sg(t), s_(t) (9)

are given. These functions are defined for t > 0 and are continuous in their domain of

definition. It is assumed that they satisfy

sV(t) > sT(t ), sM(t) > s_(t), sg(t) >_ s_(t), Vt > 0

5



and

lira s_(t)= lira sT(t ) = lira s_(t)= lira s_](t)= lira s_(t)= lira s_(t)=0
t_OO t ---*OO t---*OO t_oo t'--*C_ t---*OO

The functions (9) are called the envelope functions. (See below.)

We seek for a controller K'(s) which satisfies the following set of design objectives:

L Pole placement: We require

K'(s) e pc.

II. Decoupled command tracking of step inputs at steady-state: Let Ct [K(s)] and C2[K(s)]

denote the closed-looptransferfunctionsassociatedwith the input/output pairs (wl,zl) and

(w2,z2),respectively,and define

et(K) = !imoC,[K(s)], e2(K)= !_C2[K(s)l.

The controllerK'(s) should be Pareto optimal with respect to the criterion

(lleKK(s))ll, lle=(K(s))ll;K(s) e _).

III. Minimization of step response transients with respect to envelope specifications: Let

z_ be partitioned as z_ = [z21 z_2]'. Consider a fixed but otherwise arbitrary K E/C. Assume

that the closed-loop system is initially at rest and apply the following input:

w_(t)= I,w2(t)= o,vt> o.

The corresponding response of z_ isdenoted by

c_(t) = _._(t).

Now, again assume that the closed-loopsystem isinitiallyat restand apply the following

input:

w_(t) = O, w2(t) = 1, vt > o.

Denote the corresponding response of z2(t)by

c2_(t)= z2_(t),c22(t)= z22(t).

Note that the functions el(t),c21(t)and c_2(t)are bounded in [0,oo), due to the fact that

they are the step responses of stableproper transferfunctions.Also noticethat cl(t),c21(t)

and c22(t)are functionsof K(s); we suppress thisfor notationalsimplicity.
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We define the maximum envelope vwlations as follows:

_(K(s))l = supmax{cx(t) - s_ (t),s?(t) - c,(t),0}, (10)
t>o

¢(K(s))21 = sup max{c21(t) - s M (t), s2_(t ) - c21(t), 0}, (11)
t>o

dp(K(s))22 = sup max{c22(t) - sM(t),s_(t) -- c22(t),0}. (12)
t>o

The cost function in (10) equals the maximum of the deviation of the closed-loop step

response associated with (wl, zl) from the region upper and lower bounded by the corre-

sponding envelope functions. Similar interpretations can be given for the cost functions in

(11) and (12).

Let a subset /C of K: be given. This set is not arbitrary. We will give a more precise

description of K: in the next section.

Our third objective can now be stated.

We require K'(s) E _C and that K'(s) is Pareto optimal with respect to the criterion

(¢(g(s))l,¢(K(s))=l,¢(g(s))2=;g(s) E 1C). (13)

AN OPTIMAL INTERPOLATION APPROACH

Let us first consider how to achieve the objectives I and II.

Let

I A I Bl By
C, Dn Dn

... C2 D21 0

m,.,.._'_ G(s)

such that Bt and By have rl and r2 columns, respectively,and CI and C2 have Pl and p2

rows, respectively.Let F and H be matrices ofsuitabledimensions such that the eigenvalues

of AF := A + B2F and AH :--A + HC2 are contained in P. Let

ft.:= , 19:= , (?:= CI+Dt2F -Dt2F • (14)
0 As Bt + HD2t

Define the followingtransfermatrices

(15)



vl(s) ,----,

u,(_) .--.
AF

Cl(l:p_.:) + D12(l:p_.:)F

U:(_).---.
AFCl(p, +l:p,+_.:) + Dl_(p_ +l:p,+p_.:)F

[AHc2 B_(:'_:'_)+HD_I(:'_:'_)]'V2(s)'--"*IAHD2_(:.I:,I) 02

B2

1

Dl_(1:pl.:)
(16)

1B_
!, (17)

nl2(p+l+l:pl +p_,:) J
al(:'rl+l:rl+r2) + HD21(:'rl+l:rl+r2) 1

D21(:,rl + l:r1+r2) J

(is)

[ I [AM -B2 , Tv(s) ,---,
Tx(s) _ F I F

TN(8) _ C_
B2 AH

, TM(S)
0 C2

A controller K(s) is an element of K: if and only if

-/¢0 ], (19)

HI]. (20)

K(s) = (Tx(s) - Q(s)TNCs))-I(Ty(s) - Q(S)TM(S)) (21)

for some proper rational matrix Q(s) whose poles axe contained in P. Moreover, the transfer

function associated with (zt, wl) is equal to Rl(s) + Ul(s)Q(s)Vl(s) and the transfer matrix

associated with (z2, w2) is equal to R2(s) + U_(s)Q(s)V2(s).

Objective II can now be more explicitly stated as follows: Determine a proper rational

matrix Q(s) whose poles are contained in P and Q(0) is Paxeto optimal with respect to the

criterion

(llndo) + utCo)Qco)v_(O)ll,IlR2(o)+ uKO)Q(O)Vdo)II;Q(o) • 7_) (22)

We attack the problem of determining a Pareto optimal Q(0) by transforming that prob-

lem to a scalar minimization problem. Note from Lemma 1 that Q(0) is Paxeto optimal with

respect to the criterion (22) if and only if it is Paxeto optimal with respect to the criterion

(IIR,(O) + U_(o)Q(o)v_(o)II2,1IR2(o)+ UdO)Q(O)V2(O)II';Q(O) _ _) (23)

We solve

rain c_tlln_(o) + u_(o)sv_(O)ll 2+ a2llR2(0) + u_(o)x½(o)l?
SER

(24)
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for any nonnegative_1 and a2 satisfying el + a2 = 1, and let Q(0) = S" where S ° is the

solution of the minimization problem in (24). Defined this way, Q(0) is a Pareto optimal

solution with respect to the criterion (23) via Lemma 2.

The reason for dealing with problem (23) rather than (22) is purely technical. The

removal of the square-root operation speeds up the computation.

The cost function to be minimized in (24) is convex in S. The solution of (24) can be ob-

tained via the fminu function of MATLAB. The constants _l and a2 in (24) let us give differ-

ent weightings to the cost functions [[RI(O)+UI(O)Q(O)VI(O)[[ and [[R2(O)+U2(O)Q(O)V2(O)[[.

We arrive at the following conclusion:

A controller K(s) satisfies objective H (together with objective I) if (_1) is satisfied for

some proper rational matrix Q(s) such that the poles of Q(s) are contained in P and Q(O) =

S °"

It is seen that there is a considerable freedom in designing a controller K(s) to satisfy

objectives I and II. We will now deal with objective III to make use of this freedom.

Let us define a subset/C of K: as promised in the previous section. Let v(s) be a polynomial

of order l such that the roots of v(s) are all contained in P. Define

£ = {K(s)l K(s) = (Tx(s) -q(s)Tt,(s))-_(Tv(s)-q(s)TM(s)), Q,(s)is prover rational,

Q(s) = (1/v(s))Q(s) for somepolynomialmatriz Q(s), andV( O) - S°}

The (i,j)-th entry qo(s) of Q(s) can be written as in (8). Note that

..1 I O_I'1'0
Q(0) = _

_m, 1,0 • .. Qrn,n,O

A bijective map between/C and T_lx'''_.

We will now show the existence of a one-to-one function from /C onto "R._'="l. This

function will be used to find a Pareto optimal solution with respect to the criteria (13).

From IC to _lx,_,_ :

(al) For K(s) e IC, define

q(s) = (Tx(s)K(s) - Tv(s))(Tr,(s)K(s) - TM(s))-_ (25)

9



Eachentry of Q(s) is in the form of (8) where ai,/,0, i = 1, ..., m, j = 1,.., n, satisfy

O_l,l,0 ... O_l,n,0

:

Olin,l,0 • .. _rn,n,O

(a2) Define c_i.j, i --- 1, ..., ran, j = 1, ..., l as in (38).

(a3) Define a E _lx,,,,l as

= _(o)s" (26)

a = [&1.1 ... o_l,_o_2,1... &2.1... &,.,,,,,l ... _-,,,,_]. (27)

10

From 7_lxm'l to 1_:

(bl) Represent a E T_lx"'_ as in (27).

(b2) Obtain ai.j,0, i : 1, ..., m, j : 1, ..., n to satisfy (26).

(b3) Define a_j._, i = 1, ..., m, j = 1, ..., n, k = 1 .... , l as in (38) in terms of &_j, i = 1, ..., ran,

j=l,...,l.

(b4) Construct Q(s) = [qii(s)] via (8). Q(s) is proper rational, Q(s) : (1/v(s))(_(s) for

some polynomial matrix (_(s), and Q(0) = S °.

(bS) Define K(s) as in (21), which is contained in/C.

Let g(. ) be the map from/C to a E T_ lx"'l defined via (al)-(a3). It is not difficult to

show that g(. ) is one-to-one and onto. The inverse map g-l(. ) of g(. ) is given by (bl)-(b5).

Let us now obtain equivalent representations of the cost functions in (10)-(12) in terms

of a parameter over T_lx''_.

Partition R2(s) and U2(s) as R2(s) : [R21(s) R22(s)]' and U2(s) : lUll(s) U_2(s)]'. Then,

cl(t), c21(t), and c22(t) ate the zero-state unit-step responses associated with the transfer

functions Rl(s) + Ul(s)Q(s)Vl(s), R21(s) + U21(s)Q(s)V2(s), and R22(s) + U22(s)Q(s)V2(s),

respectively.

Write the (i,j)-th entry qii(s) of Q(s) as in (8). Define _ as in (39). From Lemma 4,

it follows that there exists scalar valued time functions _,(t), i : 1, 2, 3, and vector valued

time functions _(t), i = 1, 2, 3, each of dimension 1 x mn(l + 1), such that

_,(t) = _,(t) + a/,(t), c2,(t)= _(t) + _£(t), c_2(t)= _3(t)+ _£(t), t > 0 (2s)



From the constructive proof of Lemma 4, one can easily obtain the exact expressions of

the time functions _(t), and _(t), i = 1, 2, 3. Note that

Q(0)= (l/v(0))

3

_1,0 ... _mn--rn+l,O ]

_rn,0 ".. _ran,0

That is, the elements _,,o, i E {1, ...,ran} are fixed to satisfy Q(0) = S'. Define a vector

in 7_ _×mni according to (27). Observe that a is constructed from _ by deleting its entries

corresponding to _,o, i E {1, ..., ran}; a represents the free elements of Q(s).

We then rewrite (28) as

c,(t) -- al(t) + a/z(t), c21(t) -- a2(t) + af2(t), c22(t) - a3(t) + af3(t), t __ 0 (29)

for some scalar time functions a_(t), i = 1, 2, 3 and vector valued time functions f,(t). The

explicit expressions for ai(t) and fi(t), i = 1, 2, 3 are omitted. They can be obtained from

a,(t), and )_(t), i = 1, 2, 3 using the definition of a.

We define the following cost functionals mapping _lx,,,_ to 7"£+:

¢(_)1 -- ¢(g-l(_))l, ¢(_)21 -- ¢(g-l(r_))21, ¢(_)22 = ¢(g-1(O_))22.

For K(s) E It,

¢(K(s)), = [_(g(K(s)))z, ¢(K(s))2, = [p(g(K(s)))2z, ¢p(K(s))2= = ¢(g(K(s)))22

and, via Lemma 3, a controller K(s) is Pareto optimal with respect to (13) if and only if

g(K(s)) is Pareto optimal with respect to

(30)

This transforms the problem of finding a Pareto optimal controller with respect to (13) to

that of finding a Pareto optimal vector in 7_lx'''l with respect to (30). By Lemma 6, each of

the cost functionals ¢(a)t, _(a)_l, and ¢_(a)_2 is convex in a. Since the linear combination of

convex functionals is also convex, for any positive numbers At, As, A3, satisfying Az +A2+A3 =

1, the cost functional

¢(_) := _,¢(_), + _¢(_)_, + _3¢(_)2_ (31)

11



is convex in _. The numerical issues concerning how to find _" minimizing (31) are not

considered in this report. Assuming a numerical procedure is available to obtain such an a',

we summarize the design procedure as follows:

Step 1. Determine the matrices F and H such that the eigenvalues oLA + B2 F and A + HCs

are contained in _P. Determine 2,,/_, _', Ri(s), R2(s), Ui(s), Us(s), Vi(s), V2(s),Tx(S),

Tv(s), TN(S), TM(s) according to (14)-(20).

Step 2. Determine the weighting elements al and as according to the design requirements,

e.g., desired trade-offs between the channels and solve the scalar optimization problem (24)

for S'.

Step 3. Obtain the time functions ai(t), fi(t), i = 1, 2, 3. Determine the weighting elements

A_, i = 1, 2, 3. Using the result of scalar optimization problem (31) obtain a Pareto optimal

a with respect to (30). Let a be represented as in (27).

Step 4. Obtain aij,o, i = 1, ..., rn, j = 1, ..., n, from (26) and aij,k, i = 1, ..., m, j = 1, ..., n,

k = 1,..., l, from (38), in terms of _j, i = 1,..., ran, j = 1,..., I.

Using aij,_ construct a stable proper matrix Q(s) = [qij(s)] according to (8).

Finally, let

K'(s) = (Tx(s) - Q(s)T.(s))-t(Tv(s) - O(s)TM(s)).

K'(s) satisfies objectives I-III simultaneously.

DESIGN EXAMPLE

Consider Figure 2. The_ystem represents the simplified lateral/directional dynamics of a

very large four-engined passenger aircraft at a particular operating point at high altitude and

high longitudinal speed. (See Chapter 10.6.5 of McLean, Automatic Flight Control Systems,

1990). wt and w2 are the reference inputs for the yaw rate and bank angle commands,

respectively, z, is the yaw rate error, i.e.,

Zl --" _11 -- _/a111 rate,

z2_ is the bank angle error, i.e.,

z2, = ws - bank angle,

12



and z22 is the slip angle. We denote the yaw rate, bank angle, and slip angle by r, ¢, and

7, respectively. The control input u is composed of the aileron and rudder angles (_ and

6_, respectively) and the measured output vector y is composed of r, ¢ and the roll rate p.

(p = _).) The states of the linear system are r, ¢, p, and %

It is desired to design a controller which yields asymptotic yaw rate command tracking

and bank angle command tracking for step inputs while the slip angle is isolated from the

bank angle command at steady state. That is, letting e denote a very small number, the

transfer matrix from [wt w2]' to [z, z21 z22]' should be equal to

X

X

x

as s _ 0 where we do not care the entriesmarked by x. Expressing thisdesign objective

in terms of standard Hoo or/-/2controlproblems isdifficultbecause only the (block) main

diagonal elements of the closed-looptransfermatrix are being minimized.

We design a controllerto achieve objectives I and II.We have developed a computer

program implementing steps I and 2 above (Appendix B). The set of desired closed-loop

poles ischosen as

7) -- {-0.8,-1.9,-1.5 =1=2.7j,-1.3,-1, -1.7 4- 2.7j}.

The controller minimizes the magnitudes of the transfer functions associated with the pairs

(wi,zt), (w2, z21), and (w2, z22) at So -- O, sl = 27r/Sjrad/s(= 1.256jrad/s), and s2 =

21r/3j tad�s(= 2.093j rad/_J.

We are looking for Q(so), Q(sl), and Q(s2), satisfying that Q(so) is Pareto optimal with

respect to

(llRx(so) + Ul(so)Q(so)Vl(so)[I, IlR2(so) + U2(so)Q(so)½(so)l[; Q(so) e _), (32)

Q(st) is Pareto optimal with respect to

(lIRl(st) + U1(s,)Q(st)Vx(sx)ll,IIR2(s,)+ U_(sl)Q(sl)½(sx)ll;Q(sl) e 7_), (33)

and Q(s2) is Pareto optimal with respect to

(llRl(s2) + Vx(s2)Q(s2)Vl(s2)ll, IIR2(s2) + V2(s2)Q(s2)½(s2)ll;q(s2) • 7_). (34)

13



We define the scalar optimization problemsin (35), (36), (37) associated with (32), (33),

and (34), respectively:

+ U (s)Q(so)V,(so)ll+   llR2(so) + U2(so)Q(so)V2(so)ll), (35)

rain (alllRl(sL) + U (sz)Q(s )V (sl)ll + a llR2(sl) + U2(Sl)Q(sl)½(s )ll) (3s)

min (_lJjRl(s2) + Ul(s2)Q(s2)Vt(s_)l ] + a2JJR_(s2) + U2(s2)Q(s2)V2(s2)IJ) (37)

After obtaining minimizing solutions Q'(so), Q'(sl), and Q'(s2) to (35), (36), (37), respec-

tively (these are Pareto optimal solutions of (32), (33), (34) via Lemma 2), we determine

a stable rational matrix Q(s) which satisfies Q(s_) = Q'(s,), i = o, 1, 2, and obtain the

conroller K(s) = (Tx(s) - Q(s)TN(s))-l(Ty(s) - Q(s)TM(s)).

Figures 3-14 show the magnitude and phase plots of different controllers which were

obtained for different a_, a2 values. Figures 3-5 correspond to a_ = 0, a2 = 1, figures 6-8

correspond to al "- 0.1, a2 = 0.9, figures 9-11 correspond to al = 0.9, a2 = 0.1, and figures

12-14 correspond to al = 1, a2 = 0. It is seen that when al and a2 are both different than

zero, it is possible to achieve satisfactory tracking at steady state for both of the channels

(wl, zl) and (w2, z2). If al or as is zero, the corresponding channel has very poor tracking

performance, due to the fact that no optimization is made with regards to that channel. It is

also seen that a satisfactory tracking performance cannot be guaranteed for the frequencies

other than So, sl, and s2.

Since no optimization has been made concerning the transient characteristics, the tran-

sient behavior of the step responses are unsatisfactory. For example, Figure 15 shows the

step responses of the transfer functions associated with the input/output pairs (w2, z21) and

(w2, z22). The overshoots are extreme for both responses and necessitate the shaping of Q(s)

for good transient behavior.

CONCLUDING REMARKS

We have proposed a method forthe design of a controllerto achieve multipleclosed-loop

objectives.With thismethod, itispossibleto achieve pole placement and to minimize the

norms of particularlychosen closed-looptransferfunctions at steady state. This method

offersan alternativeto standard Hoo and/'/2 controllerdesign methods especiallyforthose

problems where the steady-statedecoupling of specificcontrolloops isconsidered.

14



Although we have shown that the optimization problem (31) is convex, it is yet unclear

how to solve that problem numerically. One possibility is to use the generic optimization

programs of MATLAB. Another possibility is to develop a specific optimization algorithm

tailored to this problem. The computation time may be a possible difficulty. At each

iteration, the program should compute the value of the cost function. This amounts to

computing the maximum values of various step responses of the closed-loop system. As the

order of the Q(s) increases, the number of parameters to be determined will also increase.

Consequently, the computational difficulties may become more complex.

15



APPENDIX A-PROOFS OF TECHNICAL LEMMAS

Proof of Lemma 1. We will prove only the [If] part. The [Only If] part cam be proven

similarly.

Let K* be Pareto optimal with respect to (2). If K" is not Paxeto optimal with respect

to (3) then there exists K* such that IIf(K*)ill 2 _< I]f(K)ill 2 for i - 1, ..., h where at least

one of the inequalitites, say IIf(KO)ho}] 2 <_ IIf(K)h°l] 2, is a strict inequality. This implies

that IIf(Z°)ill <_ IIf(g)il] for i - 1,...,h with IIf(g°)h°l] < IIf(K)holl and contradicts the

fact that K" is Pareto optimal with respect to (2).Q

Proof of Lemma 2. If K" is not Pareto optimal with respect to (5) then there exists K °

such that O(K°), <_ ¢(K')i, i = 1, ..., h where at least one of the inequalitites is a strict

inequality. Since each ai is nonnegative, this implies that ai¢(K°), _< a,¢(K')i, i = 1, ..., h

where at least one of the inequalitites is a strict inequality. Consequently,

h h

E a,¢(g*), < E a,¢(g')i,
d----I i=l

which contradicts the fact that K" is a solution of (4).O

Proof of Lemma 3. We will prove only the [If] part. The [Only If] part can be proven

similarly.

Let K* be Paxeto optimal with respect to (6). If g(K*) is not Pareto optimal with respect

to (7) then there exists a ° satisfying _(a°)i _< ¢(g(K*))i, i = 1, ..., h where at least one of

the inequalities is strict inequality. By the definition, this implies ¢(g-'(a°))i <_ ¢(K')i,

i = 1,..., h where at least one of the inequalities is strict inequality. Consequently, there is a

contradiction.Q

Proof of Lemma 4. Since B(s)Q(s)C(s) is a scalar, one can write

Let

B(s)Q(s)cCs) = (C'(s) ® S(s))vecCQ(s))

[at(s) d (s) ... := C'(s) ® S(s)

We will now define a collection of mn(l + 1) elements in T_.

For k e {0,...,/},

(_l,k "-- C:_l,l.k, -.., (_m,k -" C]rm,l,k, (_m+l,k "-- (_l,2,k, (_m+2,k "- _2,2,k, (_rm-1-3,k "- C_3,2,k, ..., (_2m,k "-- (:]fm,2,k,

• .., (_m_-m.t.l,k -" (:]rl,_,k, ..-, (:_m_,k "-- (:_m,,,k.

(3s)
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It holdsthat
_. I s%(s____)

(C'(s) ® B(s))vec(Q(s)) = _ _ 6,,k v(s)
i=l k=O

For i E {1, ..., ran}, k E {0, ..., l}, we let

1 f__ (j_)kd,(jw)eJ'_t
fi,k(t) := _ o_ v(jw)jw

We also define

1 /__ a(jw)e j''t_(t) = _ _ :_

Then, the zero-state unit step response associated with the transfer function A(s)+B(s)Q(s)C(s)

is equal to

mn l

a(t) + _ ___ 6,,kf_,k(t) = a(t) + 6[/1,0(t)... fl,t(t) f2,0(t).., f2,t(t) ... f,_n,o(t) ... fmn,,(t)]'
i=1 k=0

where

c_ := [61,o ... ch,l 62,0 ... c_2,_... _,,,,,,o ... 6m,_,t]. (39)

This completes the proof.n

Proof of Lemma 6. For convenience, define b(t) = [bl(t)... b,(t)l'.

_lx., and a2 E T/Ix'_

For _ e [0, 1], a_

¢(A_, + (1 - a)_2) = supt>0{a(t ) + (Aal + (1 - A)o2)b(t)}

= supt>_.0{(A+ (1 - A))a(t) + (Aol + (1 - A)a_)b(t)}

= sup,>0{A(a(t) + c_tb(t)) + (1 - A)(a(t) + a2b(t))}

< sup,>_o{A(a(t)+ orb(t))} + sup,>0{(1 - A)(a(t) + o2b(t))}

<__ sup,>_0{_(t)+ o_b(t)} + (1 - _)sup,_>0{a(t) + o_b(t)}

= ,X¢(a_) + (1 - _)¢(o2)

This completes the proof.Q

Proof of Lemma 8. For convenience, define b(t) = [bt(t)...b,,(t)]', c(t) = [cl(t)...cn(t)]'.

For any o,

¢(0) = max{sup{at(t) + ab(t)},sup{a2(t) + ac(t)},O} (40)
t>_O t>_O

Consider A E [0, i], ch E _i×,, and o2 E T_ Ix'.

Case I: Assume ¢(Aol + (1 - A)a2) = 0

In this case, it is trivial to see that ¢(Aal + (1 - A)a2) <_ A¢(c_t) + (1 - A)¢(a2).

17



Case 2: Assume

¢(_ + (1 - _)_) = sup{al(t) + (_ + (1 - A)_)b(t)}.
t>o

In this case, Lemma 5 implies

4)(Aal + (1 -- A)c_2) _< A sup{al(t) + alb(t)} + (1 - A) sup{al(t) + c_2b(t)}
t>_O t_>O

From (40) one can write

Asup{al(t) + a,b(t)} < A¢(al), (1 - A) sup{al(t) + a_b(t)} <_ (1 - A)¢(a2).
t_>o t>_O

From (41) and (42),

Case 3: Assume

t>o

In a similar way to Case 2, it can be shown that

¢(Aa_+ (1 - A)a2) < A¢(a_)+ (1 - A)¢(a2).

This completes the proof.O

(41)

(42)
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APPENDIX B-SOFTWARE IMPLEMENTATION

Wedescribethe softwareimplementation of the steps 1 and 2 of the procedure.

The system is created in XMATH using SystemBuild. The mathematical model of

the state-space system is generated in XMATH using the script function parti7.ms. The

data needed for the optimization problems (35), (36), and (37) is transferred to MAT-

LAB via an executable program called cony. The source code of cony is a C program

called col. c. The MATLAB program cono3, m defines various variables to be used with the

MATLAB programs qlgen.m, q2gen.m, and q3gen.m which solve the convex optimization

problems (35), (36),and (37), respectively.The MATLAB program interpol3.m deter-

mines a stable rational matrix Q(s) satisfyingQ(si) -- Q*(si), i = 0,1,2, where Q'(so),

Q'(sl), and Q'(s_) are the solutionsof (35),(36), (37),respectively.It also converts the

Q(s) data to a XMATH readable format. The XMATH fileoku.ms generates the con-

troller K(s) = (Tx(s) - Q(s)TN(s))-l(Tv(s) - Q(s)TM(s)) based on Q(s). Finally, this

controller is substituted in a simulation block in SystemBuild and the simulations are per-

formed. The following pages include the printouts of programs paxti7 .ms, col. c, cono3, m,

qlgen.m, q2gen.m, q3gen.m, interpol3.m, oku. ms and the MATLAB subroutines stac .m

and ogmen.m.
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col.c
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qlgen.m



q2gen.m



q3gen.m



interpol3.m
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Figure 2: Closed-loop system of the example.



2O

I0

: : : : : : ::

: : : : : : ::

: : : : : : : :

: : : : : : : :

: : : : : : ::

: : : : : : ::

: : : : : : ::

: : : : : : : :

: : : : : : : :

: : : : : : ::

: : : : : : ::

: : : : : : : :
: ; ; : : : ::

: : : : : : : :

: : : : : : ::

: : : : ; : ::

i i i i i_i!

i i ! i iiii
i i i i fill

i i i iili

: : : : : : : :

: : : : : : : :

: : : : : ; ::

: : : : : : : :

i t il tttt
: : : : : : ::

: : : : : : ::

: : : : : : ::

: : : : : : : :

: : : : : : : :

.. : : : : : ::

: : : : : : : :

'. : : : : : ::

: : : : : : ::

: : : : : '. : :

: : ', : : .

: : l : : :

: : : : : : : :

i : _ ! i

: : : : : :

! _ ! :ii

: : : : : :

: ! : : : :

i :: iiiii
: i i i i i!

i i : i ii
i i : ! ii

Figure 3: Magnitude and phase plots of the transfer function from wt to z_. (at = O, a2 = 1.)



2O

10

-40

20O

: : : : : : : :

: : : : : : : :

• ! ......

: : : : : : ::

: : : : : : : :

: : : : : : : :
: : : : : : : :

: : : : : : : :

..... , . .

i _ ! !

: ,, ! : : : ::

i i i {ii!ii
i i i i i i ili

i ii!i
° ........

!

. , , , , .

i i iii

! i i !!!i

i i i::iii

10

Figure 4: Magnitude and phase plots of the transfer function from to_ to z21. (ol = 0,

_2 = 1.)



2O

2OO

tO0

°

-100

i i i iiiil i i i lili! i _ i ii!i
; : : : ; : :: : : ; : ; : :: : : : : : : :
: : : : : : :: : : : : : : :: : : : : : : :

: : : : : : :: : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : .......

: : : : : : : : : : : : : : ::
................ / ;

: : ; : !

: : : : : : :

: : : : : : :

: : : : : : :
: : : : : : :

; : ; : : : ;

......T -i T"_
: : : : : :

i i !iilii i i !ii!ii _ _ i_ii_
i i i !ii!i i i i iiili i i i ilii

; _ _ i i _ i ii : : ! i i i ii :

!!! i i ! !
0.1 I 10

r,xp,,,_x{,oa/,,c]

Figure 5: Magnitude and phase plbts of the transfer function from to2 to z22. (al : O,

a2 = 1.)



i !iiiiiii i i iiiiii i  iiii
20 .............. _ ........ 4"'""_ "'''.:''"._'''.'''_'"_''._................ i......... : -i.-i-÷ ............... ,_....... ' ._.,_

10 .............. : ........ ."..... : ....:....: ..L._. ' ............. _....... .L....:....L.._.. : ._.'.

io

-20 •

2OO

_o

"_ 0,! 1 tO

r,.u,,cy (,.os/_)

Figure 6: Magnitude and phase plots of the transfer function from wl to zl.

a2 = 0.9.)

(at -- 0.1_



2O

10

100

50

0

-100

i i i _!iii

: : : : : : : :

: : : : : : : :

: : : : : : : :

i i _iiiii

: : : : : : ::

: : : !'!!i
0.1

i iiii!

i iilii

Figure 7: Magnitude and phase plots of the transferfunction from w_ to z_t. (c_ = 0.1,

_2 = 0.9.)



3O

2O

-3O

2OO

.... , • • •

...... ° •

.... ° . ° •

: : : : : : : :

• . . ° , , , ,
. . . ° ....

° .......

: : : : :

: : : : : : :

: : : : : : : :

Figure 8: Magnitude and phase plots of the transfer function from ton to =2a. (al = 0.1,

a2 = 0.9.)



30

2O

10

0

-10

-2O

2o0 i i i i flIT ' _ _ _ _ !_!
: : : : : : ::

0 '" ............ ÷........ ÷.--.-_--..-b-.÷.-_-.÷._.-i ................ .:......... i ...... -..÷.-.i.-_-.b-i.÷ ....

: : : : : : ::
: ; : : : : ::

: : : : : : : :
: : : : : : : :

........................ _...................... ._....!..._..._...,. _...!................ _......... !...... !....,...!...._..!..!... ............. _

........ ! i ii_i_
: ; : : : : : :

........................_ _ _'_'_i ..........................i......! t!_!i_ ................

: : : : ; : ;: ; ; : : : ; : :

....... ÷....._...._...,.. '..." •÷.

: : : : : ;

i i i iii

0.1 1 10

_',_cy [,_/_]

Figure 9: Magnitude and phase plots of the transfer function from wl to zt. (a_ = 0.9,

o_ = 0.I.)



20

10

-40

100

5O

: : '. '. '. : : :

i i ! i-iii

i i i i!ii
• ! ! i l !ii

i i iiiiii

: : : : : :

Figure 10: Magnitude and phase plots of the transfer function from Io2 to z21. (c_1 = 0.9,

a_ = 0.1.)



$0

20

10

-10

-20

-30

2oo

100

j o

i i i iiiii i i i iilii

iiiiiiiiiiiiiiiiiiiiiiiii...........!!!!!.......
i i i i iii_

........................i ii !!iii................i.........! ii iii...............

i ! ! iiii ¸

! ! ! ::.

...... ?....._....y..._.. :*.*: .*:
: : : : : : :

: : : : .. : :

: : : : : : :
: : : : : : :

i i i i i i!
: ; : ; : : :

: : : : : : :
: : ; : : : :

: : : : : : :
: : : : : : :

: : : : : : :

: : : : ; : :

: : : : : : :
: ; ; : : : :

-100

i i i ii ilT
: : : : : : : :
: : : : : : : :
: : : : : : : :

i i iilill
: : : : : : :1

......................._" "'.+'"'i'"_"i"_;"i .................................

!-! !iliii

: : : : : : ::
i i i _iii

iii •
i ! : i !i

i i _ ! i i!

Figure 11: Magnitude and phase plots of the transfer function from to2 to z22. ('_1 = 0.9,

o_2 = 0.I.)



2O
....... .

, • • , o ,.,

, • • , ....

: • : : :

: i!!i

....... o

!iiili

: : : : : : :

Figure 12: Magnitude and phase plots of the transfer function from wl to zl. (al = I,

a_ = 0.)



25

20

10

5

200

100

: : : : : : : :

: : ; : : : ::

: : : : : : ::
: : : : : : : :

: : : : : : : :

: : : .* : : : :
: : : : : : ', :
: : : ; ; ; : :

: : ; : : : : :

: : : : : : : :
: : : : : : : :

: : : : : : : :

i i i i iiii _ i i i i ii!i

: : : : : : : : : ; '. : : '.

: : : : : :

: : : : : : :

: : : : : : ::
: : : : : : ::
: : : : : : : :
: : : : : : : :

! ! _ i !!!!

! iiiiiii

i i i iiiii

: : : : : : : :

: : : : : : : :

: : : : : : : :

: : : : : : : :

: : : : : : : :
: : : : : : ::

: : : : : : : :

i-i i! ill!
i i i i iiii

0.1

: ; : : : : :
: : : : : : :

: : : : : : :
: : : : : : :

Figure 13: Magnitude and phase plots of the transfer function from w2 to z21. (al = 1,

= 0.)



3O

0

2OO

-I00

...... o .

i i iiili_

! ! i i iiii
t _ i :: ili

i i !iiili
i i i i ilii

i ! ! ! i!!!
i i ! i i_ii

...... . •

_-_ i i iiii
i i i !!iii

i i i i iiii
: ." *. : : ." : :

! i i !fi_ii
• . • , • o . .

i _. ; ; : :|! Ii i ! ! i!_i

0.!

. , • ....

• . o ....

Figure 14: M_gnitude and phase plots of the transfer function from u_ to z2_. (_I = I,

a2 = 0.)



"_-2

2
0

-6

.... I .... ' " " '

/

I
I

I
I

I
I

I /
I

I /
I

t /
I

I /
I /

I
I /

t ..........t .....................................1.................................................................................................
.............._'" I i I

II I i I

I'_ i /I
I

t \! /
i ii k." I
l I

_80 , , , , I , , , , I 0 , , ,5 10 15
t_-. (.)

Figure 15: Step responsesof the transferfunctionsfrom w2 to z21 (solidline)and z22(dashed

line).In thisparticularexample, the solidlinerepresentsthe bank angle errorand the dashed

linerepresentsthe slipangle error in degrees. (oi = 0, a2 = I.)





Computational Methods for
Strongly Stabilizing 7"/°° Controllers

Part 2

(NAG3-1723)

1 Introduction

In this report several research directions are described for developing computational methods

to obtain stable 7-/°0 controllers for aircraft dynamics. The proposed techniques are based on

the results of the PI's research performed for the NASA grant no. NAG3-1?23.

Recall that an important motivation behind stable (i.e. strongly stabilizing) controller

design is reliability against faults in the measurements. Also, from the implementation point

of view, it is practically impossible to te3t an unstable controller in open loop. A necessary and

sufficient condition for the existence of a strongly stabilizing controller is the parity interlacing

property (p.i.p.) [1, 2]. There are procedures for constructing stable controllers which stabilize

a given plant, [3, 1, 2]. But the problem of finding a (sub)optimal one, in the sense of 7"/°°,

is currently open. Some promising results appear in [4] (see also references therein) on the

7-/2 version of this problem. The effects of weight selection on the stability of the optimal _

controller for SISO plants have been studied in [5].

The results of [6], [7] and [8] can be used in order to obtain a parametrization of all subop-

timal _ao controllers. Most commercially available softwares (e.g. robust control modules of

MATLAB and MATRIXx) generate the so-called "central controller" of [7]. This research is

about finding a stable controller in the parametrization of all suboptimal _-/m controllers. For

a given admissible "/_m suboptimal performance level the central controller may be unstable,

but there may be stable controllers in the set of all suboptimal controllers.

The rest of this report is organized as follows. In the next section stable 7__ controller

design problem is defined a_l current research findings are summarized. Then, in Section 3 an

algorithm for interpolation with outer functions is described in connection with stable controller

design. Another approach, which uses genetic algorithms (GAs), is described in Section 4. The

search algorithms reported in Sections 3 and 4 are promising research directions determined in

the project NAG3-1723. This is an ongiong research with a continiuing support from NASA

Lewis Research Center (under a new grant no. NAG3-1826).
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2 Stable 7_°° controller design

2.1 Standard problem set-uP

The so-called"standard_m controlproblem" dealswith the system shown in Figure1. The

system equationsare assumed to be givenby the following

_(t) = A_c(t)"i"B1w(t)+ B2tc(t) (i)

z(t)= Clz(t)+ D11w(t)+ D12u(t) (2)

y(t) = C2z(t) + D21to(t)+ D22u(t) (3)

where z represents combined states (states of the plant and the weights) in the system, and com-

ponents of w axe the exogenous signals (reference inputs, disturbances, measurement noises).

The optimal 7_°° problem is to find a feedback controller K (whose input is l/and output u) so

that closed loop system is stable, and the worst energy amplification from w to z is minimized.

This problem is equivalent to finding a stabilizing controller which minimizes [JTzwl[oo, where

T:w(s) is the closed loop transfer function from u: to z. The suboptimal _oo control problem

is to find a stabilizing controller so that [IT,w[[_ < % for a specified performance level ?.

2.2 Controller formulae

The formulae of [6, 7, 8] for 7__ controllers, which satisfy a certain specified performance level

?, isgiven by

J:c = Acxc + BlcY + B2cq
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Figure 2: Suboptimal H _ controllers

u = Clczc+bll_+b12q

r = C2cz_+b_ly

where Ac, Blc, B2c, Clc, C2c, b11, hi2,/_21 are computed from two algebraic Riccati equations,

and q(t) is generated by a transfer matrix O(s), whose input is r(t), with Q E H °° (that is

O must be stable) and [[O[[_ < 7. Obviously, there are infinitely many choices for O(8) and

hence there are infinitely many suboptimal controllers. Implementation of this controller is

shown in Figure 2.

In particular, one can choose O(8) = 0, this gives the "central" controller. Note that the

central controller is stable if and only if Ac is a stable matrix (i.e. all the eigenvalues of Ac

have strictly negative real parts). Whereas, stability of a controller which is obtained from a

non-zero O(s) depends on Ae, B2c, C2e and O(s).

2.3 A BMI approach

Note that if a state space realization of Q is taken as

_:¢ = Acxq + Bqr

q = Cqx¢+Dcr



then the overall _o= controller is

+
Blc + B2cDqb21 ]Bqb2t V

u = [=c]+!bn+b12D,b 1!u

The 7.(oocontrollerisstableifand only if

(i)AK isstable,i.e.alleigenvaluesof AK are inthe open lefthalfplane,and

(ii)O(s) parametrizingthe controllerisstable(i.e.Aq isstable),and llOIloo< 7.

These conditionsare equivalentto the following.

(i)As- isstableifand only ifthereexistsP such thatP = pr > 0,and

A_P + PAs- < 0

(ii)O isstablewith [[O[Im< ? ifand only ifthereexistsPq such that Pq --P_ > 0,and

ArqPq + PqA,-(PqBq +C_Dq)R-I(P,B, + C_D,) r < O, where R= D_D,-72I < 0

or equivalently

A P, + P,A,
B, P,
C,

P,B,
-I Dqr < O.

Using theseequivalentconditionsthe followingbilinearmatrix inequality(BMI) optimiza-

tionproblem can be posed forfindingstable7"(o° controllers:



InitJalize P,Pq (_.1)I

J

N

Is

. q.oo,o=

Terminam_. Q

min

subjectto

A

AT P + PAK - A.r< 0

0_< P+AI

A_P,+v,A,
sfP,
c,

o _<p_ +,_r

0<_A+I

PoB_ CT
-I D T

Dq -_2 I

-AI_<O

IfthereexistsA < 0 the problem issolved.An alternatingoptimizationmethod isused

with the LMI (linearmatrix inequality)toolbox of MATLAB to searchforfeasiblesolutions

to thisoptimizationproblem. Note that forP and Pq fixedwe have LMIs in the variable

Q; similarlywhen Q isfixedwe have LMIs in the variablesP and Pq. A flowchartof the

proposed searchisgiven above. This algorithmhas been testedon numericalexamples for

aircraftcontrolproblems (trackingand gust alleviationproblems definedin [9]).Depending

on the realizationof the centralcontroller,the algorithmmay or may not finda feasiblestable

_oo controller.Optimal P and Pq found from thisapproach tend to be illconditionedforthe

numericalexamples consideredin thisstudy.



The BMI optimizationmethod describedabove triesto finda stable7_°° controlleras

follows:firstsome arbitrarypositivedefiniteP and P# are chosen,then A isminimized, and

the correspondingQ isdetermined,ifA < 0 we have a solution.In the next step,forthe Q

found before,we searchforP and Pq, and check A < 0,ifnot,forthisP and Pq finda new

Q, and iterateuntila feasiblesolutionisfound. Obviously,there isno guarantee that this

program willterminatewith a feasiblesolution.A similarmethod which usescoupled LMIs is

alsoproposed in [12].But theirmethod isalsoconservativeand failsto finda solutionforthe

aircarftcontrolproblems studiedhere.

Solutionsto BMI optimizationproblems are currentlyinvestigatedby severalresearchers

seee.g.[13][14]and referencestherein.However, an efficientsolutionprocedurehas not been

found yet. In factithas been shown that such problems are NP-hard [15],meaning that it

isratherunlikelyto finda polynomial time solution.Hence one isrestrictedto conservative

searchtechniqueslikethe one proposed above.

3 Interpolation with outer functions

The structure of AK given above shows that the 74_ controller is stable if and only if Q is a

stable "controller," with IIQIIm < % stabilizing the "plant" Gc :ffi (Ac, B2c, C_c). Given Go,

all stable controllers Q stabilizing Gc can be parameterized by finding all outer (minimum

phase) functions satisfying certain interpolation conditions. See [10] and [11] for the details.

In this research a Matlab based program will be coded to generate this parameterization. Then,

an optimization will be performed on the free parameter to find a feasible Q, which satisfies

IIQ[Ioo< %

Key steps to be followed are as below. For simplicity the SISO case is described here, the

MIMO case will be considered in the actual research. Let Pl,... ,Pt be the right half plane

poles of Gc and zl, .... zh be the right half plane zeros of Go'. Then, G¢ ffi mnCo/md where

mn isinnerwith zerosz_'s,m_ isinnerwith zerospj'sand Co isouter.When Q isstableand

Q stabilizesGc we have 5"c::= (1+ Go.Q)-I = mdSo forsome outer So such that

So(zi) = l/md(Zi) i -- 1,..., k.

6



Once such So is found, we can compute Q as

O = So I - rnd
rn,_Co

But for the solution of stable 7./oo control problem one also needs IIQIIoo < 7. Therefore, the

problem is reduced to finding an outer function So such that

(i) So(zi) -- 1/md(zi) for i -- 1,..., k and

(ii) [[C;'I(S; "1 - rnd)][_ < 7-

In [10] and [11] the problem of finding So satisfying (i) and having ][SoHoo < p has been studied

and all solutions are parameterized by appropriately modifying the usual Nevanlinna-Pick

algorithm. Now, a solution to stable 7"/°° control problem can be investigated by:

Task 1. implementing the above mentioned parameterization for a large p, and

Task 2. searching for an element which satisfies the condition (ii), from this parameterization.

4 Genetic algorithms for stable 7-/c° controller search

4.1 General description

Genetic algortihms (GAs) are a class of heuristic search methods, just like simulated annealing.

GAs borrow ideas from the mechanisms of evolution and natural genetics.

Genetic Algorithms are inspired by the natural search and selection processes leading to

the survival of the fittest PSdividual. They are stochastic search processes directed toward

increasing the fitness of an individual, and unlike some gradient search techniques which may

get stuck in local solutions, due to their stochastic nature GAs can locate the globally optimal

solutions. GAs borrow some terminology from biology to describe the elements of a GA.

Beginning from the most basic, the elements that make up the setting for GA are:

• GENE : A gene is a single digit number. Depending on the base in which the numbers

are described, it is either an element of the set {0, 1,..., 9} (Decimal representation), or

the set {0, 1} (Binary representation).



• CHROMOSOME :A chromosome is a string ofgenes;

Ex : 1232378682, 3247866820012, etc. (Decimal rep.)

1001011010, 101101011011, etc. (Binary rep.)

Chromosomes are encoded forms of the parameters (matrices,vectors)that the GA is

searchingfor. Each singlechromosome isa candidate parameter collection,which can

solvethe optimal searchproblem.

TRAIT :A trs/tisa decimal number. When chromosomes are decoded, each entry of

the parameter matricesiscalleda trait.

MEMBER : A member(individual) isthe object that GA istryingto solve for. It is

representedby itschromosome. Chromosome determines a member's traits,which in

turn determine the member.

PARENT :A parent isa member which participatesin the creationof a new member.

(The operationsperformed to get the new member willbe discussedlater.)

POPULATION : A population is a set of members. During its operation GA works on

a set of candidates, which are the members of the population.

FITNESS :Fitnessisthe measure ofsuitablenessof the members. To findthe optimal

solutionto the search,the objectiveofGA isto maximize the fitness,i.e.optimalsolution

of the searchisthe element which isfound to have the largestfitnessvLlue.

Coding Scheme :(for decimM representation)

LZ lJ
,, +/- / genes

trait : (+/-)0. _Sj_, LO(+/') e__

The fundamenUtl mechanisms of GA are inspired from the theory of evolution. The three

fundamental mechanisms are:
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CROSSOVER : With a predetermined probability Pc two members interchange digits

from their chromosomes, creating two new members. The idea is to carry the good

features of some members to the others, and create "fitter" members. Typically Pc is a

large number like 0.85 or 0.9.

MUTATION : With a predetermined probability P,n the digits of resulting chromosomes

after crossover are arbitrarily altered. This operation allows creating members with

totally different characteristics, and is the main mechanism which prevents getting stuck

at local optimums. Typically p,, is chosen to be a small number like 0.2 or 0.25, as we

don't want to have a totally random search.

ELITISM : This operation carries the fittest member from the previous generation to the

next generation. It prevents the fittest member from getting lost due to crossover and

mutation operations.

Genetic Algorithm Operation :

The algorithm starts with a population of candidate parameters, which can be totally

random, or some of which, if available, can be suboptimal previously found solutions to the

problem. The method requires a fitness function to be chosen, which is to be maximized

by the desired parameter vector. The members having higher fitnesses get a higher chance

in participating in the creation of the new generation. While choosing the parents the so

called "roulette wheel" is used, in which the probability of each member being a parent is

directly proportional to its fitness. Then evolution mechanisms like crossover and mutation

are performed on the parents to create new members to the population. If a prespecified fitness

value is reached, or if the fitness cannot be improved any more the algorithm is terminated;

otherwise it is repeated over and over by creating new generations.

4.2 Application of GA to the Strong Stabilization Problem with an 7__

Performance Constraint

In Section 2 is shown that the problem of strong stabilization of P with K which will also

satisfy the 7"/_ performance constraint has been reduced to the strong stabilization problem of

C with Q in which Q will have to satisy an 74m norm bound, see Figure 3. For this purpose

9
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Figure 3: Pammetrization o/ the controller

GA is implemented.

1. Initialize the population; randomly pick Q -- (Aq, Bq, Cq, Dq)'s.

9. Make sure that all the Q's result in stable .4_ matrices

Until achieved, create new Q's by using the current member (Q leading to the

unstable A_) and fittest element in the population as parents.

3. Assign fitnesses to all Q's (as a function of |Q|**, and A,naz{.4k(Q)})

If for any Q, JQ|oo < % and A,,wz{A_(Q)] < 0 is achieved, then TERMINATE

4. Compute the new parents which _ill create the next generation (roulette wheel selection)

5. Construct the new generation using evolution mechanisms (crossover and mutation)

Propogate the fittest element directly to the new generation (elitism)

6. Go to Step 2.

A search for a constant Q was triedfirst,i.e.search for Dq only. For small sizedQ's,

and forthe trackingproblem, thisapproach was observed to finda Dq matrix,which solves

the problem. Since we were dealingwith a constant Q, we did not need to worry about the

stability,but only the norm constraintin thisapproach.

A search for a dynamic compensator has alsobeen coded, and triedfor the same plant.

Yet,ensuringtl_t .4_ isstablewith geneticoperatorsisvery time consuming. As inclusionof

I0



a dynamic compensator significantly enlarges the parameter space, the search becomes much

more time consuming (yet, it is believed that now the Q's with the desired properties are

denser in this space, and thus can be easier to find).

Recall from the previous section that the strong stabilization problem without the "H°°

performance constraint can also be formulated as an interpolation problem with an outer

function. This approach may be utilized while initializing the population, or during the effort

of creating a stable compensator which makes AK stable, this is Task 1 defined in the previous

section. A possible approach to accomplish Task 2 is to use the GA serch mechanism outlined

above.
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5 Conclusions and Further Research Directions

Currently there is no single computationally feasible algorithm to find "best" stable 7_a° con-

troller. In this project the algorithms proposed above are identified as promising methods to

find such controllers. However, further research has to be performed in order to evaluate the

proposed algorithms, and make them numerically efficient. The following specific tasks are

proposed for further study.

Task 1. Interpolationwith outer[unctions:

Write a Matlab based program forparameterizingallouter functionsSo such that

So(zi) = 1/md(zi), i = 1,..., k and [[So[Ioo < p for some fixed large p.

Task 2. Genetic algorithms [or stable 7"l°° controller search:

Incorporate the parameterization implemented in Task 1 into the genetic algorithm which is

used for finding a stable Q with Ilqll_, < "y,which stabilizes Go. For an alternative solution,

write a separate GA code for searching a feasible outer So satisfying

IICL'I(S_-x - md)tlo, < 7.

Task 3. BMI optimization methods:

In Section 2 it was demonstrated that the problem of finding a stable 7"/°* controller can be

formulated as a BMI optimization problem. But the BMI optimization problem is shown to

be NP-hard. Nevertheless, for the special form of the BMIs appearing in stable _00 controller

design there may be an efficient solution. We also propose to study the structure of BMIs for

this problem, in particular the effect of different realizations of the central controller will be

investigated. ._
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